​Disilicate de sodium: a new compound with broad applications

With the continuous development of science and technology, people's pursuit of new materials is becoming increasingly urgent. In recent years, a new compound called disilicate de sodium has gradually attracted the scientific community's attention. The unique properties of this compound give it broad application potential in many fields, bringing new opportunities to the development of modern industry. This article will introduce in detail the properties, applications and research prospects of disilicate de sodium and look forward to the future development of this compound.

disilicate de sodium1

(disilicate de sodium)

Properties of disilicate de sodium

disilicate de sodium is a new inorganic compound with the chemical formula Na2SiO3. Disilicate de sodium has unique physical and chemical properties compared to traditional silicate compounds. First, it has excellent stability and can maintain its structural integrity at higher temperatures. Secondly, disilicate de sodium has good reactivity and can react with metal oxides, hydroxides, etc., to generate inorganic materials with specific functions. In addition, disilicate de sodium also has good water solubility, biocompatibility, and specific application potential in the biomedical field.

Applications of disilicate de sodium

1. Ceramics and glass manufacturing

disilicate de sodium has a wide range of applications in ceramics and glass manufacturing. Adding disilicate sodium to ceramics and glasses can improve your products' quality and performance. For example, adding disilicate de sodium to ceramic products can lower the firing temperature and shorten the firing time while improving the product's toughness and thermal shock resistance. In glass manufacturing, disilicate de sodium can replace part of the silicate, reduce production costs, and improve glass's heat resistance and toughness.

2. Chemical industry

Disilicate de sodium has a wide range of applications in the chemical industry. Due to its good reactivity, it can be used to synthesize a variety of organic and inorganic compounds. For example, inorganic materials with specific functions can be synthesized by reacting disilicate de sodium with certain metal oxides, providing a new approach to developing high-performance materials. In addition, disilicate de sodium can also be used to prepare nanomaterials, catalyst carriers, etc.

3. Biomedical field

disilicate de sodium has specific application potential in the biomedical field. Due to its good water solubility and biocompatibility can be used as a drug carrier for drug delivery and tumor treatment. In addition, disilicate de sodium can also be used in research fields such as tissue engineering and biological imaging.

disilicate de sodium2

(disilicate de sodium)

Research prospects of disilicate de sodium

With the in-depth research on the properties and applications of disilicate de sodium, the application prospects of this compound are becoming more and more broad. Future research will involve the following aspects:

1. Structural design of materials

By structurally designing disilicate de sodium, new materials with excellent properties can be synthesized. For example, by adjusting the composition and structure of disilicate de sodium, materials with high strength, toughness, high-temperature resistance and other properties can be prepared.

2. Performance optimization

Modifying disilicate de sodium can improve its performance and application effects. For example, surface modification can make disilicate de sodium more widely used in the biomedical field.

3. Sustainability research

While applying disilicate de sodium, its sustainability issues must also be considered. Therefore, future research will involve developing new synthesis methods, optimizing production processes, etc., to reduce production costs and environmental impact.

Supplier

Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including boride powder, nitride powder, graphite powder, sulfide powder, 3D printing powder, etc.
If you are looking for high-quality potassium silicate liquid, please feel free to contact us and send an inquiry.

Preparation, performance and application of stainless steel clad plate

A stainless steel clad plate is a composite aluminum alloy panel made of a carbon steel bottom layer and a stainless steel plate cladding. Its main feature is the fusion of carbon steel and stainless steel plates resulting in a sturdy casting industry. It can carry out various production processes such as pressing, cold-formed steel, fiber optic metal laser cutting, electric welding, etc., and has excellent performance parameters.

The underlying material of stainless steel clad plates can use various carbon steels and special steels such as Q235B, Q345R, and 20R. The cladding material can be stainless steel plates of multiple specifications such as 304, 316L, 1Cr13 and duplex steel. The raw materials and thickness can be interchanged to ensure the satisfaction of different consumers.

stainless steel clad plate

Stainless steel composite plate not only has the deterioration resistance of stainless steel but also has the high-quality impact toughness and processing characteristics of carbon steel. It is a new type of chemical product. stainless steel clad plates have long been widely used in crude oil, chemical plants, the salt industry, water conservancy project construction, and other fields.

As a commodity for a conservation-oriented society, stainless steel clad plates reduce the consumption of precious metals and significantly reduce project budgets. The ultimate integration of low cost and features has excellent social and economic benefits.

How are stainless steel clad plates made? There are generally three production processes for stainless steel clad plates, namely industrial equipment composite, explosion composite, and rolled composite.

stainless steel clad plate

1. Industrial equipment complex

Generally used to directly produce stainless steel composite seamless steel pipes, while explosion cladding and rolling cladding are first to produce stainless steel clad plates, and then make composite steel or hot-roll or hot-roll into composite coils.

2. Rolling compound

This is also the dedicated professional capability adopted by Cheng Ming New Materials. After preparatory work such as blank assembly, the composite production process only needs to be produced on the regular rolling network, and the heating and rolling capabilities are used to achieve structural integration of the composite panels and furniture panels.

3. Explosive recombination

The explosive composite production process is first to prepare the composite board and furniture board, then install a layer of gunpowder on the composite board, and use the instantaneous high pressure and rapid destructive characteristics of the explosive explosion to ensure the solid casting integration of the metal solid layer.

stainless steel clad plate

Disadvantages of explosive recombination:

1. When the explosion occurs, it is as far away from a tall and tall city as possible. It is important that there is no person or building within 5 kilometers of the explosion;

2. There are very strict regulations on the storage and transportation of gunpowder and explosives;

3. Limited by temperature and other necessary conditions for processing technology, the productivity of explosive compounding could be higher.

Compared with explosive lamination, rolling lamination has safe performance and more precise shape and size precision, excellent fusion surface quality and fused composite characteristics. Therefore, rolled stainless steel composite plates have better technical parameters and are more conducive to further production, processing and application.

stainless steel clad plates are structural and functional materials, which have both the functionality of the mixed layer and the base layer's strong and tough combination properties.

Structural steel: also called base material, ensures the toughness and strength of stainless steel clad plates.

Functional steel: Also known as cladding materials, it gives more characteristics to stainless steel clad plates. Such as corrosion resistance provided by stainless steel, nickel and alloys, titanium and titanium alloys, wear resistance provided by wear-resistant steel and martensitic stainless steel.

stainless steel clad plate

Disadvantages of explosive recombination:

1. The explosion must be far away from the city, and there must be no people or buildings within 5 kilometers of the explosion center;

2. There are very strict requirements for the storage and transportation of explosives and detonators;

3. Limited by weather and other process conditions, the production efficiency of explosive compounding is low.

Compared with explosive lamination, rolling lamination is not only safer but also has more precise dimensional accuracy, excellent joint surface quality and blended composite performance. Therefore, the rolled stainless steel composite plate has better performance and is more conducive to further processing and application.

Application areas

Large construction such as highway construction, railway ships, environmental protection equipment, petrochemical industry, storage tanks, bridge manufacturing, etc.

Supplier

TRUNNANO is a supplier of copper clad steel materials with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you are looking for high-quality copper clad steel materials please feel free to contact us and send an inquiry.

What is MAX MXene phase material

What is MAX phase materials?

MAX phase materials are novel layered carbon-nitride inorganic non-metallic materials with the electrical and thermal conductive qualities of metals, consisting of three elements with the molecular formula Mn+1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers to the main group elements, and X refers to the elements C and N. MXene materials are graphene-like structures obtained by MAX-phase processing with two-dimensional transition metal carbides, nitrides, or carbon-nitrides.MAX/MXene materials are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens. These materials exhibit excellent electrical and heat conductivity as well corrosion resistance. This makes them suitable for a variety of applications including electronics, energy, biomedicine and environmental protection.

What is MXene material phase?

MXene material is characterized with high specific surfaces, chemical stability, biocompatibility as well as tunable physical characteristics. They have many uses, such energy storage and transmissions, environmental protection, electronics, biomedical applications and electronic. MXene materials are used in energy as anode materials and electrodes for supercapacitors. These materials have high energy storage, high power, and a long cycle life. MXene material can be used to remove heavy metals and organic pollutants from water, and also as catalyst carrier materials in catalytic reactions. MXene material can be used to carry drugs and as bio-imaging agent in the biomedical industry for drug therapy, medical imaging diagnosis and other purposes. MXene material can be used for electronics, such as transistors, field effects tubes, integrated devices and other electronic components. It has high electrical conductivity with low power consumption, and mechanical flexibility.

Material properties of MAX/MXene

Excellent electrical conductivity. MAX/MXene has a conductivity that is 100 times greater than copper. The good conductivity of MAX/MXene materials makes them a good choice for applications in energy storage and transmitting.

High-Specific Surface: MAX/MXene material has a very large specific surface area, several hundred square meters for each gram. This high specific area increases the adsorption of the material and makes it useful for environmental applications.

Good chemical resistance: MAX/MXene products have excellent chemical resistance and remain stable under harsh conditions such as acids, bases and high temperatures. This feature allows it to be used in a wide variety of applications, such as industrial wastewater treatment or heavy metal ion adsorption.

MAX/MXene is compatible with living organisms and can be used for biomedical purposes. MXene material can be used, for example, as a drug carrier to deliver drugs into the cells. This will enable drug therapy.

Physical Properties that are Tunable: By adjusting the chemical composition or structure of MAX/MXene, you can tune their physical properties. For example, by adjusting the chemical composition of an MXene material, its energy band structure can be changed, giving it the potential for semiconductor-prepared high-performance electronic device applications.

MAX/MXene: Applications and Uses

Energy Storage and Transmission

The MAX/MXene material has excellent electrical conductivity that can be 100 times greater than copper. The high electrical conductivity of MXene makes it an attractive material for energy storage applications. MXene materials are also used as anode material for lithium-ion cells, which have lithium storage capacities up to hundreds of milliamperes-hours per kilogram, excellent cycle life, and a multiplier effect.

Environmentally Friendly

MAX/MXene has a specific surface area that is several hundred square meters for each gram. This increased surface area enhances the material's adsorption abilities, making it valuable in environmental applications. MXene can remove heavy metals and organic pollutants from the water. MXene material can also be used in catalyst carrier materials for oxidation and reducton reactions, removing harmful substances from water and air.

Biomedical field

MAX/MXene material has good biocompatibility. It can be used as a biomedical materials. MXene material can, for instance, be used as drug carriers that deliver drugs to cells. MXene material can be used to diagnose and treat diseases using medical imaging. MXene material can also be utilized to create biosensors capable of detecting biomolecules or cellular activity.

Electronics

MAX/MXene has tunable properties that can be used for high-performance devices. MXene material can be used in electronic devices, such as transistors and field effect tubes. MXene-based electronics have greater electrical conductivity than conventional silicon-based ones, as well as lower power consumption and improved mechanical flexibility. These electronic devices have many applications, such portable electronic devices or smart clothing. MXene material can also be used in the production of high-frequency RF devices, antennas, as well as other wireless communication equipment.

MAX/MXene materials are a type of new two-dimensional nanomaterials with excellent electrical conductivity and thermal resistance, as well as biocompatibility and corrosion resistance. MAX/MXene has a wide range of applications due to its unique properties. These include energy storage and transmission as well as environmental protection, biomedicine, electronics, and electronic devices. By advancing research into MAX/MXene and developing new preparation techniques, we will discover and use more applications.

Supplier of Max phase materials

We offer high purity and ultrafine MAX phase powders Such as Cr2AlC. Ta2AlC. Ta4AlC3. Ti3AlCN. Ti2AlN. Ti4AlN3. Nb4AlC3. Click on the desired product or email us to submit an inquiry.

Concrete Retarder A Miraculous Additive That Changed the Construction Industry

Concrete, an ordinary building material, has profound effects on our daily lives. Concrete is widely used for a variety of buildings and projects - from skyscrapers and bridges to roads and public facilities, to home improvement. Technically, it is difficult to make concrete plastic enough for construction. It is necessary to introduce a concrete retarder, a remarkable additive.

Concrete Retarder Set Retarder or is a concrete additive that reduces the rate and heat of hydration for cement and gypsum. This extends setting time. Through scientific chemistry, it effectively solves concrete's problem of speeding up hardening. This allows concrete to maintain its fluidity and plasticity for longer periods.

Concrete performance has become more and more important in recent years with the rapid expansion of the construction sector. Concrete retarder, as an important additive to concrete, plays a significant role in improving concrete's performance. Concrete retarders will make the concrete stronger to ensure the construction performance is maintained, especially during the hot summer months or when the construction site needs to be in direct sunlight for long periods of time.

Concrete retarders are not only good for extending concrete's plasticity, but they also have many other advantages. First, it reduces the hydration rates and heat of the gypsum or cement, reducing the heat and shrinkage that is generated during the hardening processes of concrete. Secondly, they can improve concrete's ability to resist chloride erosion, freeze/thaw resistance and crack resistance.

In general, the selection and adjustment for retarder depends on the actual construction conditions and concrete performance requirements. The amount of retarder should be adjusted based on the actual requirements. In addition, the use of other concrete additives should be considered by retarders to get the best possible construction result.

Concrete retarder, in general, is an important addition to construction materials. The scientific and reasonable chemical principle and the practical application of its effect have proven to be important in improving concrete performance, construction conditions, project quality, etc. The progress of construction and science, as well as the development of science, gives us reason to think that concrete retarder can play an important role in future construction, providing more safety and convenience.

Application Fields of Gallium Nitride

The wide-gap semiconductor material GaN is widely used due to its excellent electrical, optical and physical properties.

1.Semiconductor light

Gallium Nitride is widely used in semiconductor lighting. The high reflectivity, transparency and luminescence of gallium nitride material make it ideal for high-performance, LED lamps. LED lamps offer a higher level of luminous efficiency than fluorescent and incandescent bulbs, as well as a longer life span. This makes them suited for use in many fields, including indoor and exterior lighting, displays, automobile lighting, etc.

In semiconductor lighting materials such as gallium nitride are used mainly as substrates for the LED chips. LED chips, the main components of LED lighting, are directly responsible for the overall performance. They determine the LED light's luminous efficacy and service life. Gallium Nitride is an excellent substrate material because it has high thermal conductivity. It also has high chemical stability and stability. It improves the LED chip's luminous stability and efficiency, as well as reducing manufacturing costs.

2.High-temperature electronic devices

Gallium Nitride is also widely used for high-temperature electronics devices. Gallium nitride, which has high electron saturation rates and high breakdown electric fields, can be used for electronic devices that work in high-temperature environments.

Aerospace is a harsh field and it's important to have electronic devices that work reliably in high temperature environments. As a semiconductor high-temperature material, gallium-nitride materials are mainly used to make electronic devices like transistors and field effect transistors for flight control and control of fire systems. Gallium nitride is also used in power transmission and distribution to produce high-temperature devices, such as power electronics switches and converters. This improves the efficiency and reliability of equipment.

3.Solar cells

Gallium nitride solar cells also receive a lot attention. High-efficiency solar panels can be produced due to its high transparence and electron saturation rate.

Silicon is the main material in most traditional solar cells. Silicon solar cells are inexpensive to manufacture, but have a narrow bandgap (about 1eV) which limits their efficiency. Gallium-nitride solar cell have a greater energy gap width (about 2.30eV) which allows them to absorb more sunlight, and therefore have a higher conversion efficiency. The manufacturing cost of gallium-nitride cells is low. They can offer the same photoelectric converter efficiency for a lower price.

4.Detectors

Gallium Nitride is also widely used as a detector. They can be used to manufacture high-efficiency detectors like spectral and chemicals sensors.

Gallium Nitride can be used in the security industry to produce efficient X-ray sensors that can be utilized for security checks on airports and major buildings. Gallium nitride is also used for environmental monitoring to produce detectors like gas and photochemical sensor, which detect environmental parameters, such air quality, pollutants, and other environmental parameters.

5.Other applications areas

Gallium nitride can be used for many different applications. For example, galium nitride is used to make microwave and high frequency devices such as high electronic mobility transistors and microwave monolithic combined circuits. These are used in fields like radar, communications, and electronic countermeasures. As well, gallium nitride It can also be used for the manufacture of high-power lasers and deep ultraviolet optoelectronics.

What is Lithium stearate powder

Description of Lithium stearate :

Lithium stearate is an organic compound with the chemical formula LiSt and is a white powder at room temperature. It is highly lipophilic and can form high light transmittance at low concentrations. This compound is slightly soluble in water at room temperature and readily soluble in organic solvents such as ethanol and acetone. Lithium stearate has a high melting point and flash point, making it stable at high temperatures and has good thermal safety. In addition, lithium stearate has good chemical stability and has a certain resistance to acids, bases, oxidants and reducing agents. Lithium stearate is less toxic but still needs to be handled with caution. Excessive intake of lithium stearate may cause diarrhoea, vomiting and difficulty breathing. Prolonged exposure to lithium stearate may cause skin and eye irritation, so gloves and goggles should be worn during operation.

Application of Lithium stearate :

Surfactant: Lithium stearate is used as a surfactant and lubricant in personal care products such as soaps, shampoos, body washes and cosmetics. It has good hydrolysis stability and excellent foam properties, providing a clean and gentle washing experience.

Polymer synthesis: Lithium stearate plays an important role in polymer synthesis. It can be used as a donor of stearate and participate in forming polymer chains. These polymers can make plastics, rubber fibres, etc., with good mechanical properties and chemical stability.

Cosmetic formulations: Lithium stearate is often used as a softener and moisturizer. It helps to enhance the moisturization and skin feel of the product, making the skin smoother and softer. In addition, lithium stearate also has antibacterial and anti-inflammatory properties that help improve skin problems.

Paints and coatings: Lithium stearate is used as a thickener and levelling agent in paints and coatings to help control the flow of coatings and the properties of the final coating. It also provides good weather and scratch resistance, making the coating more durable.

Pharmaceutical field: The application of lithium stearate in the pharmaceutical field includes drug carriers, excipients and stabilizers. It can improve the stability of drugs and help improve the taste and solubility of drugs.

Agriculture: Lithium stearate can be used as a fertilizer carrier and plant protection agent. It helps improve fertilizer efficiency and plant disease resistance, improving crop yield and quality.

Petrochemical: Lithium stearate can be used as a lubricant and release agent in the petrochemical industry. Lithium stearate can be used as a catalyst carrier in petroleum cracking to improve cracking efficiency and yield.

Production Method of Lithium stearate :

Chemical synthesis method:

Lithium stearate is synthesised by reacting stearate with lithium metal through a series of chemical reactions. First, the lithium metal and stearate root are heated and stirred in an organic solvent to make the two fully react. Then, pure lithium stearate products are obtained through separation, washing and drying steps.

The specific synthesis steps are as follows:

(1) The lithium metal and stearate root in organic solvents (such as ethanol) mixed, heated stirring, so that the two fully react;

(2) The reaction solution is cooled to precipitate the lithium stearate crystal;

(3) Filter out the lithium stearate crystal and wash it with water to neutral;

(4) The washed crystals are dried to obtain lithium stearate products.

The advantages of chemical synthesis are a mature process, high production efficiency and high product purity. Still, the organic solvents used will impact the environment, and a certain amount of waste will be generated in the production process.

Biological fermentation method:

Biological fermentation uses microorganisms (such as yeast) in the medium fermentation to produce lithium stearate. The basic principle of this method is to use the metabolic pathway of microorganisms to produce stearic acid and then react with metal ions (such as lithium ions) to produce lithium stearate.

The specific production steps are as follows:

(1) The microorganisms are inoculated into the medium containing precursor substances for fermentation culture;

(2) The fermentation liquid is filtered to obtain a solution containing stearic acid;

(3) Add metal ions (such as lithium ions) to the solution containing stearic acid so that the two fully react;

(4) The reaction solution is separated, washed and dried to obtain lithium stearate products.

The advantages of biological fermentation are environmental protection and less waste discharge, but the production cycle is longer, and the production conditions are higher.

Prospect Market of Lithium stearate :

First, the application of lithium stearate in personal care products will continue to play an important role. As a surfactant and lubricant, it plays an important role in products such as soaps, shampoos, body washes and cosmetics. With the improvement of people's living standards and the continuous expansion of the cosmetics market, the demand for lithium stearate will also gradually increase.

Secondly, the application of lithium stearate in the field of polymer synthesis is also increasing. It can be used as a donor of stearate and participate in the formation of polymer chains. With the continuous development of polymer materials science, the demand for lithium stearate will continue to increase.

In addition, the application of lithium stearate in pharmaceutical, agricultural and petrochemical fields is also expanding. In the pharmaceutical field, lithium stearate can be used as a drug carrier, drug excipient and drug stabilizer. In the field of agriculture, lithium stearate can be used as a fertilizer carrier and plant protection agent. In the petrochemical field, lithium stearate can be used as a lubricant and release agent. The demand for lithium stearate in these areas will also increase with the continuous advancement of application technology.

However, the market outlook of lithium stearate also faces some challenges. For example, the production process requires the use of lithium metal, which makes the production cost higher. In addition, the application field of lithium stearate is relatively narrow, mainly concentrated in personal care products, polymer synthesis, pharmaceuticals, agriculture and petrochemical industries. Therefore, it is necessary to continuously develop new application areas and markets to expand the application scope and market demand of lithium stearate.

Lithium stearate Powder Price :

The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.

If you are looking for the latest lithium stearate powder price, you can send us your inquiry for a quote.

Lithium stearate Powder Supplier :

Technology Co. Ltd. () is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality

chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, boron powder, 3D printing powder, etc.

If you are looking for high-quality lithium stearate powder, please feel free to contact us and send an inquiry.

More than a hundred schools in the UK have been closed due to the risk of collapse

In the UK, more than 100 schools were closed because of the danger of collapse

In the UK, many schools use Autoclaved aerated cement (RAAC). This is a concrete material that is lighter.

In 2018, the roof collapsed of a primary-school in southeast England. Later, it was discovered that RAAC material had been used to build the school's roof and other buildings. This raised safety concerns.

BBC reported that RAAC materials were widely used from the 1950s until the mid-1990s in areas such as roof panels, and had a lifespan of around 30 years.

According to reports, the risk of building collapse is not only present in schools, but also in hospitals, police station, and other public structures. RAAC material has been found.

The Royal Dengate Theatre at Northampton is temporarily closed after RAAC material was found.

According to NHS, RAAC has been detected in 27 hospital building.

The NHS chief has been asked for measures to be taken to prevent collapse.

BBC reported that since 2018 the British government has warned schools to be "fully ready" in case RAAC is found within public buildings.

The Independent reported Jonathan Slater a former senior education official, who said Prime Minister Sunak, when he was chancellor of treasury in 2021, approved budget reductions to build schools.

Nick Gibb is a senior official at the Department of Education. He said that the Department of Education asked for PS200m annually for school maintenance. Sunak, then the chancellor, only provided PS50 million per year.

The report also states that despite Sunak having promised to renovate at least 50 schools every year, in the main reconstruction plan of the government only four schools were renovated.

The British National Audit Office chief also criticised this crisis. He claimed that the Sunak government had adopted a "plaster-method" of building maintenance.

He believes the government's underinvestment has forced schools to close, and that families are now "paying the cost".

Paul Whitman is the secretary-general of National Association of Principals. He said parents and public will see any attempt of government to shift blame to individual schools, as a "desperate attempt to divert attention away from its own serious mistakes."

Whitman claimed that the classroom has become completely unusable. Whitman blamed the British Government for the situation. "No matter what you do to divert or distract, it won't work."

London Mayor Sadiq khan said that the government should be transparent. This will reassure parents, staff, children, and others.

BBC reported schools in the UK were pushing forward with inspections and assessments. Children who had been suspended because of school building issues will be temporarily housed, or they can learn online.

Applications of Nickel-based Alloy Rod

Nickel alloy rod contains nickel as its main alloying element, as well as other elements like iron, chromium and molybdenum. Nickel-based alloys are more resistant to corrosion and stable at high temperatures than iron-based metals. This makes them popular in many industrial and engineering applications.

Petrochemical Industry

Nickel-based rods have become a common material in the petrochemical industries. In petroleum cracking, nickel-based rods are used for reactor manufacturing. They can withstand high pressure and temperature conditions and offer good corrosion resistance. Nickel-based rods can also be used for manufacturing equipment like pipelines and containers during petrochemical processes.

Nickel-based alloys rods are used primarily in the petrochemical industries to produce high-temperature high-pressure units, heat exchangers and cooling towers. It is essential to select materials that have high resistance to corrosion, are resistant to high temperature, and can withstand high pressure and temperatures. Nickel-based rods are a material that has excellent properties, and is used to manufacture petrochemical machinery.

Nuclear Industry

The nuclear industry can use nickel-based alloys rods as manufacturing material for nuclear reactors. These rods are corrosion-resistant and exhibit excellent high temperature stability. The nickel-based rods, with their excellent high-temperature stability and corrosion resistance, can be used as structural materials or shells for nuclear fuel component components.

Nickel-based alloys rods are used mainly in nuclear reactors as materials to manufacture fuel components. These components have to be able work in environments with high temperature, high pressure, and radioactivity. These components must be highly resistant to corrosion and high temperature. Nickel-based rods are a material that has these properties, and is therefore a preferred choice for the manufacture of nuclear fuel elements.

Aerospace field

Nickel-based alloys rods are used primarily in aerospace to make key components such as aviation engines and rocket motors. Nickel-based materials are used in aerospace because of their high-temperature resistance and excellent stability.

In aviation engines nickel-based alloys rods are used primarily as a manufacturing material for turbine discs and blades. They also serve as guide vanes. These components have to be able to withstand high temperatures, pressures and speeds. These components must have excellent high temperature strength, creep strength, corrosion resistance. Nickel-based alloys rods possess these properties, and are therefore one of aviation engine manufacture's preferred materials.

Automotive Manufacturing sector

Nickel-based alloys rods are perfect for manufacturing high-performance automobile components. Nickel-based rods are used in the manufacture of high-performance automotive components, such as engine cylinder blocks or cylinder heads.

In the automotive industry, nickel-based rods are primarily used to make key engine components, such as cylinders, cylinder heads and pistons. Materials with high strength and corrosion resistance are needed for these components, which will be working in high-temperature and high-pressure environments. Nickel-based alloys rods possess these properties, and are therefore one of automotive engine manufacturers' preferred materials.

Medical device field

Medical devices can benefit from the biocompatibility of nickel-based alloys and their corrosion resistance. This ensures safety and reliability.

Medical devices is a broad field that includes a variety of medical devices including surgical instruments, implant, diagnostic equipment, rehabilitation materials, etc. In the manufacture of these high-precision, high-quality devices, nickel alloy rods are often used as raw material. In surgical instruments, for example, surgical knives and forceps that are made from nickel-based metal rods provide excellent durability and cutting performance. Orthopedic and cardiovascular implants made with nickel-based rods are biocompatible and have excellent mechanical properties. They can treat various orthopedic or cardiovascular diseases.

Other fields

Nickel-based alloys rods can be used for a variety of applications, including construction, power and electronics. Nickel-based rods are used in power transmission and structural support for high-rise building. They can also provide outstanding strength and durability. Nickel-based rods are useful for manufacturing key components in the electronics sector, such as circuit boards and materials to shield electromagnetic fields.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to Sales2@nanotrun.com for Inconel powder.

High Purity 3D Printing Nickel Alloy IN718 Powder

In718 Powder is widely used for industrial and aviation turbo-propellers, petrochemical, nuclear reactors, and laser cladding.Particle Size: 15-45mm; 15-53mm; 53-120mm and 53-150mm

3D Printing Nickel Alloy Inconel 718 Properties:
Nickel Alloy IN718 powder is resistant to heat and corrosion.
This kind of precipitation-hardening nickel-chromium alloy is characterized by having good tensile, fatigue, creep and rupture strength at temperatures up to 700 degC (1290 degF).

Inconel 718 material properties:
Nickel Alloy INCONEL 718, a high-strength nickel-chromium metal that resists corrosion and is suitable for temperatures ranging from -423degF to 1300degF. It is easy to fabricate complex parts from this age-hardenable material. Its welding characteristics are excellent, particularly its resistance against post-welding cracking. The density of Inconel 718 is 8.71g/cm3 when the temperature is 300K. The melting temperature of In718 is 1430degC.

The Inconel 718 alloy has a nickel base and is ideal for applications which require high strength over a wide temperature range, from cold temperatures up to 1,400degF. The In718 alloy has excellent impact and tensile strengths. Inconel 718 exhibits good corrosion and oxidation resistance in atmospheres within the alloy's useful strength range.

The alloy Inconel718 contains niobium, molybdenum, and nickel. It exhibits high strength and good corrosion resistance at low and high temperatures below 650degC. It can be in a solid solution state or a precipitation hardening condition.

Inconel 718, mechanical properties
The Inconel718 alloy is a good welding material with excellent properties.

is a trusted supplier. If you're interested in purchasing 3D Printing Nickel Alloy in718 powder in bulk, please send us an email to receive the most recent inconel price. We also provide inconel-718 plate inconel-718 bar and other shapes.

In718 Composition

You can also find us on Twitter @Ni

Nb

Mo

It is a good idea to use a different language.

Al

Curiosity

Fe

50.0-55.0

17.0-21.0

4.75-5.25

2.80-3.30

0.65-1.15

0.20-0.80

<=0.30

Bal

Categories

Alloy grades & Characteristics

Alloy number

Nickel alloy powder (IN718 Ni 718)

Particle size

15-45mm, 15-53mm, 53-120mm, 53-150mm

Morphology:

Spherical or near spherical

Appearance:

Grey

Package:

Aluminum bag, Vacuum packing

Application:

3D Printing Nickel Alloy powder

Other Applications

powder metallurgy(PM), injection molding(MIM), spray painting(SP) etc.



How are 3D printing Nickel Alloy In718 Powder manufactured?
In the mechanical processing field, Inconel718 is a material that can be difficult to work with. It has to be processed in a number of ways.
Warm-up
It is important to clean the surface of the workpiece before and during the healing procedure in order to maintain a clean surface. Inconel718 becomes brittle when heated in an environment containing sulfur, lead, phosphorus and other low melting metals. Impurities are caused by fuel, water, lubricating, marking paints, chalks, lubricating, and other materials. Fuels should not have sulfur levels above. For example, impurity levels in liquefied natural gas and liquefied a gas should be lower than 0.1%. City gas sulfur content should be below 0.25g/m3. And the sulfur level in petroleum gas should not be higher than 0.5%.
The heated electric stove should have an improved temperature control. Its gas should be neutral, or at least weakly alkaline.
Thermal processing
The temperature range for Inconel718 is between 1120 and 900 degrees Fahrenheit. It is important to anneal the material in time after hotworking, for best results. During hot working, the material must be heated above the upper limit for the processing temperature. To ensure plasticity, the temperature at which the material reaches 20% deformation should not fall below 960degC.
Cold Work
After the solution treatment, coldworking should be performed. Because the work-hardening rate of Inconel718 (which is higher than austenitic stainless) requires a different processing method, it's important to adjust the equipment and perform an intermediate annealing during the coldworking process.
Heat treatment
Material properties can be affected by different aging and solution treatments. Long-term aging can improve the mechanical properties of Inconel718 due to its low diffusion rate.
Polished
The oxide that forms near the weld on the Inconel718 is more difficult than the stainless steel. It must be polished with fine sanding cloth. It is necessary to remove the oxide with sandpaper, or use a salt solution before pickingling in a mix of nitric and hydrofluoric acids.
Machining
Inconel718 must be machined only after a solution treatment. Work hardening should also be taken into consideration. Inconel718 has a lower surface cutting speed than austenitic stainless.
Welding
The precipitation-hardening type Inconel718 alloy is very suitable for welding and has no tendency to crack after welding. The main advantages of this material are its weldability, easy processing and high strength.
Inconel718 has been designed for use in arc and plasma welding. Before welding the material, it should be free of any oil, powder or other contaminants.

Applications for 3D printing nickel alloy IN718 powder
Our original nickel alloy for 3D-printing and additive manufacturing, Inconel In718.

In718 is good in terms of tensile, fatigue and fracture resistance. It can resist creeping at temperatures of up to 700degC. It has excellent corrosion resistance, and it is easy-to-weld. Inconel In718 may also be heat-treated.

Inconel can be used to make a wide variety of products. These include liquid fuel rockets, rings, casings and other formed sheet metal components for aircraft, land-based gas engines, cryogenic tanks, fasteners and instrument parts.

In718 is a high-temperature alloy that has an excellent heat resistance. This makes it ideal for gas turbine and aerospace applications. Other applications include measuring probes and pumps in energy and processing technology.

Storage Conditions of IN718 powder:
IN718's performance and effects of use will be affected if the powder is exposed to dampness. The IN718 must be kept in a dry and cool room and sealed in a vacuum pack. IN718 should also not be exposed to stress.

Shipping & Packing of IN718 powder:
The quantity of powder IN718 will determine the type of packaging.
IN718 Powder Packing: Vacuum packaging, 100g/bag, 500g/bag, 1kg/bag and 25kg/barrel.
Shipping IN718 Powder: Can be sent by sea, air or express, as quickly as possible after payment receipt.


Technology Co. Ltd., () is an established global chemical supplier and manufacturer, with over 12 years' experience in providing high-quality nanomaterials. These include boride powders, graphite or nitride particles, 3D-printing powders, etc.
Contact us to receive a quote. (brad@ihpa.net)

Nickel Alloy Powder Properties

Alternative Names Inconel-718 Powder, Inconel-718 Powder
CAS Number N/A
Compound Formula Ni/Fe/Cr
Molecular Mass N/A
Appearance Gray-black powder
Melting Point 1370-1430 degC
Solubility N/A
Density 8.192 g/cm3
Purity N/A
Particle Size 15-45mm, 15-53mm, 53-120mm, 53-150mm
Bolding Point N/A
Specific Heating N/A
Thermal Conduction 6.5 W/m*K
Thermal Expander N/A
Young’s Module N/A
Exact Count N/A
Monoisotopic Mash N/A

Nickel Alloy Powder IN718 Health & Safety Information

Safety Advisory Danger
Hazard Statements H317-H351-H372
Flashing point N/A
Hazard Codes Xn
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information NONH for All Transport Modes
WGK Germany N/A

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Tungsten-nickel-copper/iron alloy is characterized by low thermal expansion, high density, radiation absorption and high thermal and electrical conductivity. It is widely utilized in the aerospace and medical industries.

About High Density Tungsten Aloy Rod Grinding Surface:
Tungsten-alloy rods are made mostly from tungsten alloyed with nickel, iron, or copper.

Properties:
High thermal conductivity and thermal conductivity, low thermal expansion. Perfect performance in environments with high radiation exposure.

Applications:
The aerospace, medical and military industries use this material extensively.


Payment & Transport:

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar Properties

Alternative Names Tungsten Alloy Bar
CAS Number N/A
Compound Formula N/A
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 17g/cm3
Purity N/A
Size
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Measure N/A
Monoisotopic Mash N/A

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the energy, petrochemical, e-commerce, and electronics industries.

Metal Alloy High Purity Copper Plate, 8.92g/cm3,
Surface:
Brush, hairline, mirrors, oiled, milled.

Dimension:


Applications:
Interior decoration: ceilings, walls, furniture, cabinets, and elevator decoraction.

Payment & Transport:

Metal alloy 8.92g/cm3 high purity polished copper plate

Alternative Names Copper Plate
CAS Number N/A
Compound Formula Curiosity
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 8.92g/cm3
Purity 99.95%, 99.99%, 99.995%
Size The following are examples of customized products:
Bolding Point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Measure N/A
Monoisotopic Mash N/A

Health & Safety Information for Metal Alloy 8.92g/cm3 High Purity Polised Copper Plate

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

W-Ni - Cu alloy is used in the production of Tungsten alloy balls. It is widely utilized in the fields of aviation, oil drilling, and aerospace.

High Density Tungsten Alloy Metal Ball, 18g/cm3:
Diameter: 1.0mm-150.0mm
Surface: sintered or forged



Application:
Electrical instrumentation and industrial purposes are also widely used.

Alloy tungsten balls are available in different sizes and grades. Contact us for any of your needs.


Payment & Transport:

Metal Alloy Tungsten Alloy Balls 18g/cm3 High-Density Properties

Alternative Names Tungsten Alloy Ball
CAS Number N/A
Compound Formula W-Ni-Cu
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 18g/cm3
Purity N/A
Size They can be customized
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young's Module N/A
Exact Count N/A
Monoisotopic Mash N/A

Metal Alloy Tungsten Alloy High Density Ball Health & Safety information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity 3D Printing Nickel Alloy IN718 Powder

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

High Purity 3D Printing 304 Stainless Steel Powder

Newsiberocruceros is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsiberocruceros.